Directed evolution: an approach to engineer enzymes.
نویسندگان
چکیده
Directed evolution is being used increasingly in industrial and academic laboratories to modify and improve commercially important enzymes. Laboratory evolution is thought to make its biggest contribution in explorations of non-natural functions, by allowing us to distinguish the properties nurtured by evolution. In this review we report the significant advances achieved with respect to the methods of biocatalyst improvement and some critical properties and applications of the modified enzymes. The application of directed evolution has been elaborately demonstrated for protein solubility, stability and catalytic efficiency. Modification of certain enzymes for their application in enantioselective catalysis has also been elucidated. By providing a simple and reliable route to enzyme improvement, directed evolution has emerged as a key technology for enzyme engineering and biocatalysis.
منابع مشابه
Biocatalyst development by directed evolution.
Biocatalysis has emerged as a great addition to traditional chemical processes for production of bulk chemicals and pharmaceuticals. To overcome the limitations of naturally occurring enzymes, directed evolution has become the most important tool for improving critical traits of biocatalysts such as thermostability, activity, selectivity, and tolerance towards organic solvents for industrial ap...
متن کاملDirected evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo.
Many lead compounds in the search for new drugs derive from peptides and polyketides whose similar biosynthetic enzymes have been difficult to engineer for production of new derivatives. Problems with generating multiple analogs in a single experiment along with lack of high-throughput methods for structure-based screening have slowed progress in this area. Here, we use directed evolution and a...
متن کاملEngineering of a target site-specific recombinase by a combined evolution- and structure-guided approach
Site-specific recombinases (SSRs) can perform DNA rearrangements, including deletions, inversions and translocations when their naive target sequences are placed strategically into the genome of an organism. Hence, in order to employ SSRs in heterologous hosts, their target sites have to be introduced into the genome of an organism before the enzyme can be practically employed. Engineered SSRs ...
متن کاملEvolving strategies for enzyme engineering.
Directed evolution is a common technique to engineer enzymes for a diverse set of applications. Structural information and an understanding of how proteins respond to mutation and recombination are being used to develop improved directed evolution strategies by increasing the probability that mutant sequences have the desired properties. Strategies that target mutagenesis to particular regions ...
متن کاملDirected evolution of enzymes and biosynthetic pathways.
Directed evolution is an important tool for overcoming the limitations of natural enzymes as biocatalysts. Recent advances have focused on applying directed evolution to a variety of enzymes, such as epoxide hydrolase, glyphosate N-acetyltransferase, xylanase and phosphotriesterase, in order to improve their activity, selectivity, stability and solubility. The focus has also shifted to manipula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Critical reviews in biotechnology
دوره 26 3 شماره
صفحات -
تاریخ انتشار 2006